792 research outputs found

    Presidential Address, 1982

    Get PDF

    Presidential Address

    Get PDF

    Surgery combined with controlled-release doxorubicin silk films as a treatment strategy in an orthotopic neuroblastoma mouse model

    Get PDF
    Background: Neuroblastoma tumour resection goal is maximal tumour removal. We hypothesise that combining surgery with sustained, local doxorubicin application can control tumour growth.methods: We injected human neuroblastoma cells into immunocompromised mouse adrenal gland. When KELLY cell-induced tumour volume was >300 mm3, 80–90% of tumour was resected and treated as follows: instantaneous-release silk film with 100 μg doxorubicin (100IR), controlled-release film with 200 μg (200CR) over residual tumour bed; and 100 and 200 μg intravenous doxorubicin (100IV and 200IV). Tumour volume was measured and histology analysed.results: Orthotopic tumours formed with KELLY, SK-N-AS, IMR-32, SH-SY5Y cells. Tumours reached 1800±180 mm3 after 28 days, 2200±290 mm3 after 35 days, 1280±260 mm3 after 63 days, and 1700±360 mm3 after 84 days, respectively. At 3 days post KELLY tumour resection, tumour volumes were similar across all groups (P=0.6210). Tumour growth rate was similar in untreated vs control film, 100IV vs 100IR, and 100IV vs 200IV. There was significant difference in 100IR vs 200CR (P=0.0004) and 200IV vs 200CR (P=0.0003). Tumour growth with all doxorubicin groups was slower than that of control (P: <0.0001–0.0069). At the interface of the 200CR film and tumour, there was cellular necrosis, surrounded by apoptotic cells before reaching viable tumour cells.conclusions: Combining surgical resection and sustained local doxorubicin treatment is effective in tumour control. Administering doxorubicin in a local, controlled manner is superior to giving an equivalent intravenous dose in tumour control

    Effect of Surface Patterning and Presence of Collagen I on the Phenotypic Changes of Embryonic Stem Cell Derived Cardiomyocytes

    Get PDF
    Embryonic stem cell derived cardiomyocytes have been widely investigated for stem cell therapy or in vitro model systems. This study examines how two specific biophysical stimuli, collagen I and cell alignment, affect the phenotypes of embryonic stem cell derived cardiomyocytes in vitro. Three phenotypic indicators are assessed: sarcomere organization, cell elongation, and percentage of binucleation. Murine embryonic stem cells were differentiated in a hanging drop assay and cardiomyocytes expressing GFP-α-actinin were isolated by fluorescent sorting. First, the effect of collagen I was investigated. Addition of soluble collagen I markedly reduced binucleation as a result of an increase in cytokinesis. Laden with a collagen gel layer, myocyte mobility and cell shape change were impeded. Second, the effect of cell alignment by microcontact printing and nanopattern topography was investigated. Both patterning techniques induced cell alignment and elongation. Microcontact printing of 20 μm line pattern accelerated binucleation and nanotopography with 700 nm ridges and 3.5 μm grooves negatively regulated binucleation. This study highlights the importance of biophysical cues in the morphological changes of differentiated cardiomyocytes and may have important implications on how these cells incorporate into the native myocardium.Singapore-MIT Alliance for Research and TechnologyNational Science Foundation (U.S.) ((Science and Technology Center (EBICS): Emergent Behaviors of Integrated Cellular Systems, Grant CBET-0939511)Charles Stark Draper Laboratory (Internal Research and Development Program

    The Oncogenic Lung Cancer Fusion Kinase CD74-ROS Activates a Novel Invasiveness Pathway through E-Syt1 Phosphorylation

    Get PDF
    Patients with lung cancer often present with metastatic disease and therefore have a very poor prognosis. The recent discovery of several novel ROS receptor tyrosine kinase molecular alterations in non–small cell lung cancer (NSCLC) presents a therapeutic opportunity for the development of new targeted treatment strategies. Here, we report that the NSCLC-derived fusion CD74-ROS, which accounts for 30% of all ROS fusion kinases in NSCLC, is an active and oncogenic tyrosine kinase. We found that CD74-ROS–expressing cells were highly invasive in vitro and metastatic in vivo. Pharmacologic inhibition of CD74-ROS kinase activity reversed its transforming capacity by attenuating downstream signaling networks. Using quantitative phosphoproteomics, we uncovered a mechanism by which CD74-ROS activates a novel pathway driving cell invasion. Expression of CD74-ROS resulted in the phosphorylation of the extended synaptotagmin-like protein E-Syt1. Elimination of E-Syt1 expression drastically reduced invasiveness both in vitro and in vivo without modifying the oncogenic activity of CD74-ROS. Furthermore, expression of CD74-ROS in noninvasive NSCLC cell lines readily conferred invasive properties that paralleled the acquisition of E-Syt1 phosphorylation. Taken together, our findings indicate that E-Syt1 is a mediator of cancer cell invasion and molecularly define ROS fusion kinases as therapeutic targets in the treatment of NSCLC.National Institutes of Health (U.S.) (Grant NCI U01 CA141556

    Cystamine/cysteamine rescues the dopaminergic system and shows neurorestorative properties in an animal model of Parkinson's disease.

    Get PDF
    The neuroprotective properties of cystamine identified in pre-clinical studies have fast-tracked this compound to clinical trials in Huntington's disease, showing tolerability and benefits on motor symptoms. We tested whether cystamine could have such properties in a Parkinson's disease murine model and now provide evidence that it can not only prevent the neurodegenerative process but also can reverse motor impairments created by a 6-hydroxydopamine lesion 3weeks post-surgery. Importantly, we report that cystamine has neurorestorative properties 5weeks post-lesion as seen on the number of nigral dopaminergic neurons which is comparable with treatments of cysteamine, the reduced form of cystamine used in the clinic, as well as rasagiline, increasingly prescribed in early parkinsonism. All three compounds induced neurite arborization of the remaining dopaminergic cells which was further confirmed in ex vivo dopaminergic explants derived from Pitx3-GFP mice. The disease-modifying effects displayed by cystamine/cysteamine would encourage clinical testing
    • …
    corecore